

Implementing Visual Design Patterns
By James Hobart, President, Classic System Solutions
August 2002

The next evolution in capturing and implementing design knowledge will be the use of
visual design patterns (VDP). VDPs offer a powerful new way of focusing design
solutions, based on context, by telling the developer when, why, and how the design
solution can be applied successfully. Applying VDPs to complex systems is both
challenging and potentially very rewarding. Countless designs have been deployed to
very large user communities only to result in poor usability. The proprietary nature of
these types of applications, coupled with the proliferation of deployment platforms,
makes it difficult for organizations to compare successful outcomes among teams and

to cooperatively develop VDPs to solve common design problems. VDPs can provide massive benefits to
users, as the repetitive nature of patterns can translate into significant cost reductions in training and
support for both internal and external users. Implementing a way of capturing, managing, and delivering
design standards and VDPs across the enterprise can maximize the use of the design assets, improve the
efficiency of the development process, increase the productivity of the development teams, and achieve
consistent and usable designs.

Implementing Visual Design Patterns

Implementing VDPs into a development process can be challenging. Although developers may be familiar
with traditional software engineering design patterns, they may not be accustomed to using this approach
to create new visual interfaces and may be skeptical of their value to the coding process. Gaining
consensus among a project team on which VDPs work best for a complex transactional system requires a
great deal of iterative design work, team facilitation, and usability testing. Taking the time to document and
validate the VDPs requires discipline on the part of the project members and a constant vigilance to
identify, refine, and test the VDPs as they evolve.

What should be in a Visual Design Pattern Repository?

We view the VDP repository as a dynamic, growing source of design knowledge supported by your existing
expertise. Capturing, refining, documenting, and re-using VDPs is a continuous journey requiring an
ongoing commitment. Ultimately, VDPs should be shared across enterprises, thus leveraging the effort and
work of the human factors teams behind them. As the collection of VDPs grows, the task of organizing
them for use by your development teams grows. We have found that the best way of organizing VDPs is by
type of usage. The developer looking for a VDP typically has a specific design issue and translates that
issue into a question. For example: How do I allow very experienced keyboard-oriented users fast, efficient
entry of a full calendar date in a web application?

Ideally, the developer should be able to easily browse a set of categories related to the issue to find a VDP.
As the repository grows, a non-categorized search and a search by problem will be needed to find the right
VDP.

Copyright © 2004, Classic System Solutions, Inc. 101B Sand Creek Road Suite 209 Brentwood, CA 94513
The Usability Engineering Experts 925.250.2550 925.516.9658 www.classicsys.com

A partial list of VDPs that we have developed for transactional systems includes the following.

Data Entry Navigation
Simple form Menus
Complex form Repetitive transactions
Transactional save / validation Tabs
Dates (calendars) List management
Grid / table entry Object / sub-object

Providing Usage-Centered Design Context to VDPs

By employing usage-centered design techniques, we can provide a great deal of context to a VDP that
provides guidance to new team members on when, how, and why to use the VDP. VDPs are very
dependent on the models employed during the usage-centered design, like the user role, task, and
operational models. As these models are developed and refined for a project, an enterprise repository of
VDPs can be defined. For instance, if a project is directed towards a mobile executive user who performs
infrequent tasks like scheduling appointments, a VDP for a PDA calendar can be identified. The developer
can then study the VDP for its applicability and, eventually, use the supporting code bases, design
guidelines, and case studies to help solve the issue. Feedback from implementation of the VDP can then
be sent back to the repository and associated models.

Developing User Role Models

When designing systems, we often start our role models with three basic user types: customer, employee,
and supplier. These roles can often be easily mapped to VDPs based on assumptions about their usage.
For instance, the three macro roles fold nicely into the B2C (business to consumer), B2B (business to
business), and B2E (business to employee) genre of VDPs now being employed by enterprise resource
software vendors like SAP and PeopleSoft.

A Multi-Column List VDP Examined

Let’s take a problem that a developer may face and apply a VDP to see how it works. Let's presume that
the developer is creating a web-based transactional application that allows the user to display, manipulate,
and act upon line items in a multi-column list. Upon building a user role model, the developer determines
that the primary users of the list will be semi-trained employees with occasional need to perform the self-
service human resources tasks from a web-based desktop either at home or work. Further development of
use cases and their success scenarios help us further choose from a few variants on the available VDPs.
Based on the design problem being addressed, the developer can then access the repository of VDPs and
quickly filter down to those related to list management with a web-deployment for semi-trained users who
perform the task infrequently. The developer then can quickly scan a list of available visual examples of the
VDPs and select the most applicable one. Here is an example of a possible layout for this type of VDP.

Copyright © 2004, Classic System Solutions, Inc. 101B Sand Creek Road Suite 209 Brentwood, CA 94513
The Usability Engineering Experts 925.250.2550 925.516.9658 www.classicsys.com

Below: A web-based list, semi-trained user, limited actions on the row

The same problem can be addressed with a variation on this VDP if the user role model indicates a high-
volume transactional worker within a human resources department who is comfortable using a
client/server-based application and who needs to perform a variety of actions on the items in the list.

Below: A web-based list, expert user, many actions on the row

VDPs Supported by Models

As the usage-centered models evolve in an enterprise, the associated VDPs will be continually validated by
use cases early in the design and actual usage in production. The VDPs will be refined with usability and
field testing, thus preserving the hard work performed by the design teams. The essential models of usage-
centered design become the context that supports the growing repository of VDPs.

Below: Visual design patterns supported by contextual models

Copyright © 2004, Classic System Solutions, Inc. 101B Sand Creek Road Suite 209 Brentwood, CA 94513
The Usability Engineering Experts 925.250.2550 925.516.9658 www.classicsys.com

What Does a Complete VDP Look Like?

A full implementation of VDPs requires more than just the visual layouts. Our experience has shown that
VDPs supported by a robust, yet concise, base of design knowledge are much more likely to be
implemented by developers. Developers who can evaluate the VDP to see how it can be used in their
design problem will be more likely to use the VDP rather than forging ahead with new designs. VDPs
should be easy to update and share across teams and should be stored in a web-based repository on the
corporate intranet. In addition, VDPs should be supported by known good and bad examples. Examples
can include information about deployment, experience and ratings from usability tests, and interactive items
delivered via animation, so that the developer can quickly see how a VDP would behave "in action". The
VDP should also be supported by one or more design guidelines, adding rigor to why the VDP is presented
as a best practice.

Interestingly, we have found that this approach is excellent for getting developers to actually read
guidelines. Their interaction normally starts with the VDP and follows to reviewing the supporting guidelines
once they feel that the VDP has merit for solving their design problem. Experiential data such as case
studies, quality assurance and design checklists, and code templates are also linked to the VDP to provide
the "what, why, and how" total solution to the design problem. During the usability testing of our repository,
we found that many developers were not familiar with the term "pattern", so we substituted the word
"solutions" for increased clarity. The VDP example below is a from our repository product called GUIguide.

Below: Example of a multi-column list VDP from GUIguide

Copyright © 2004, Classic System Solutions, Inc. 101B Sand Creek Road Suite 209 Brentwood, CA 94513
The Usability Engineering Experts 925.250.2550 925.516.9658 www.classicsys.com

Copyright © 2004, Classic System Solutions, Inc. 101B Sand Creek Road

 Suite 209 Brentwood, CA 94513

The Usability Engineering Experts 925.250.2550 925.516.9658 www.classicsys.com

VDPs Supported by Team Experience

Design teams learn best by sharing their experiences. An hour in the observation room of a usability lab
provides a developer with vast amounts of information on users attempts to use their newest software
creation. In addition to providing real-time experiential learning, online tools designed to deliver expertise
on-demand in a developer-friendly format should also be provided. Developers can access these tools
during the design process to help them learn how to create usable, consistent, and intuitive user interfaces.
Examples of such tools include case studies, glossaries of terms, usability studies, and book reviews that
point developers to useful reference information that support their design decisions and the VDP repository.

Below: VDPs are supported by experiential data

Summary

Employing proven VDPs in the development process is the key to improving the consistency of user
interfaces for complex transactional web applications. And, consistency is the key to delivering ease-of-use.
Supporting VDPs with rich contextual information provided by the models developed by a usage-centered
design approach helps ensure design teams that the VDPs are relevant and suited to solving their design
problems. VDPs that include code templates, navigation widgets, and other design assets increase the
efficiency of the development process by encouraging the reuse of those assets within and across design
teams. Capturing existing design assets and documenting design expertise in a central, accessible
repository allows enterprises to retain their investment in staff development, while simultaneously reducing
the time wasted on redundant design efforts.

Investing in VDPs is essential to delivering consistent user interfaces. However, traditional approaches of
implementing VDPs often fall short of expectations because of difficulties in managing, using, updating, and
enforcing the VDPs after adoption. Fortunately, products are now being developed to offer a complete,
flexible, and scalable solution for capturing, managing, and delivering design knowledge across the
enterprise. Using their corporate network, enterprises can create a convenient, searchable repository of
VDPs, guidelines, case studies, checklists, and other resources that the entire design team can access on
demand. A collaborative system with open access, like GUIguide, allows everyone in the enterprise to
contribute their design knowledge to the repository.

Copyright © 2004, Classic System Solutions, Inc. 101B Sand Creek Road Suite 209 Brentwood, CA 94513
The Usability Engineering Experts 925.250.2550 925.516.9658 www.classicsys.com

http://www.guiguide.com/

Copyright © 2004, Classic System Solutions, Inc. 101B Sand Creek Road Suite 209 Brentwood, CA 94513
The Usability Engineering Experts 925.250.2550 925.516.9658 www.classicsys.com

VDPs allow enterprises to improve the usability of their software and web applications by leveraging design
knowledge and enabling efficient development practices. More than just standards, patterns-based
solutions offer great hope in dealing with the increased complexity of designing systems. Investment in the
development and deployment of a solutions-driven approach must provide a way of capturing, managing,
and delivering design knowledge, so that enterprises can develop easy-to-use software on time and on
budget.

About the author:
James Hobart is an internationally recognized user interface design consultant based in California, USA.
He specializes in the design and development of large-scale, high-volume client/server and web
applications. He is an expert in GUI design for transaction processing systems and strategies for migration
to thin-client graphical user interfaces. He can be reached at jimh@classicsys.com

Find more articles on Usability at www.classicsys.com

mailto:jimh@classicsys.com
http://www.classicsys.com/

	Implementing Visual Design Patterns
	By James Hobart, President, Classic System Solutions
	About the author:

